oblate parabola - определение. Что такое oblate parabola
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое oblate parabola - определение

Cuspidal cubic; Neile's parabola; Semi-cubic parabola; Semicubic parabola; Neile parabola; Neile's Parabola
  • a}}.
  • Relation between a semicubical parabola and a ''cubic'' function (green)
  • Tangent at a semicubical parabola

Semicubical parabola         
In mathematics, a cuspidal cubic or semicubical parabola is an algebraic plane curve that has an implicit equation of the form
Metathrinca parabola         
SPECIES OF INSECT
Ptochryctis parabola
Metathrinca parabola is a moth in the family Xyloryctidae. It was described by Edward Meyrick in 1914.
Parabola butyraula         
SPECIES OF INSECT
Idiophantis butyraula; Parabola (moth)
Parabola is a monotypic moth genus in the family Gelechiidae erected by Anthonie Johannes Theodorus Janse in 1950. Its only species, Parabola butyraula, was first described by Edward Meyrick in 1913.

Википедия

Semicubical parabola

In mathematics, a cuspidal cubic or semicubical parabola is an algebraic plane curve that has an implicit equation of the form

y 2 a 2 x 3 = 0 {\displaystyle y^{2}-a^{2}x^{3}=0}

(with a ≠ 0) in some Cartesian coordinate system.

Solving for y leads to the explicit form

y = ± a x 3 2 , {\displaystyle y=\pm ax^{\frac {3}{2}},}

which imply that every real point satisfies x ≥ 0. The exponent explains the term semicubical parabola. (A parabola can be described by the equation y = ax2.)

Solving the implicit equation for x yields a second explicit form

x = ( y a ) 2 3 . {\displaystyle x=\left({\frac {y}{a}}\right)^{\frac {2}{3}}.}

The parametric equation

x = t 2 , y = a t 3 {\displaystyle \quad x=t^{2},\quad y=at^{3}}

can also be deduced from the implicit equation by putting t = y a x . {\textstyle t={\frac {y}{ax}}.}

The semicubical parabolas have a cuspidal singularity; hence the name of cuspidal cubic.

The arc length of the curve was calculated by the English mathematician William Neile and published in 1657 (see section History).